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Let X be a real normed space, Y a real Banach space, and let Cn(X, Y ) denote
the space of n-times continuously differentiable functions f : X � Y. We prove that
the class Cn has the double difference property, that is if Cf (x, y) := f (x+ y)&
f (x)& f ( y) belongs to the space Cn(X_X, Y ) then there exists an additive function
A : X � Y such that f &A # Cn(X, Y ). Similar result is also obtained for the Jensen
equation. As an application we show that the Cauchy and Jensen equations are
stable with respect to large class of seminorms defined by means of derivatives.
� 1999 Academic Press

1. INTRODUCTION

In 1940, S. M. Ulam posed the following problem (cf. [11]).

We are given a group (X, +) and a metric group (Y, +, d ). Given
=>0, does there exist a $>0 such that if f : X � Y satisfies

d( f (x+ y), f (x)+ f ( y))<$ for all x, y # X

then a homomorphism a : X � Y exists with

d( f (x), a(x))<= for all x # X?
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This question initiated the stability theory in the Hyers�Ulam. sense. The
outline of this theory can be found in the survey papers [1, 2, 4].

Assume that Y is a normed space. For a function f : X � Y we put

& f &sup :=sup
x # X

& f (x)&.

Let Cf denote the Cauchy difference of a function f : X � Y, i.e, let

Cf (x, y) :=f (x+ y)& f (x)& f ( y) for x, y # X.

Then the stability question can be reformulated as follows. Given =>0,
does there exist a $>0 such that if f : X � Y satisfies

&Cf &sup<$

then an additive function a : X � Y exists with

& f&a&sup<=?

It is natural to consider Ulam's question for different norms, not only for
the supremum one. The stability problem with respect to Lp norm was con-
sidered in [9] and [6] and with respect to Lipschitz norms in [7].

Throughout the paper X and Y will denote a real normed space and a
real Banach space, respectively. By N we denote the set of all nonnegative
integers, and by N+ the set of all positive integers. Let f : X � Y be an
n-times differentiable function. The n th derivative of f will by denoted by
Dnf, and D0f stands for f. By Cn(X, Y ) we denote the space of n-times
continuously differentiable functions and by BCn(X, Y ) the subspace of
Cn(X, Y ) consisting of bounded functions. C�(X, Y) stands for the space
of infinitely many times differentiable functions.

We assume that we are given a norm in X_X such that &(x1 , x2)& is a
function of &x1& and &x2 &, and the following condition is satisfied:

&(x, 0)&=&(0, x)&=&x& for x # X.

For a function F defined in X_X its partial derivatives will be denoted by
�1 F, �2 F. Let i1 : X � X_X, i2 : X � X_X be injections defined by

i1(x) :=(x, 0) for x # X,

i2( y) :=(0, y) for y # X.

168 TABOR AND TABOR



Let L : X_X � Y be a bounded linear mapping. It follows directly from the
assumed conditions on the norm in X_X that

&L b i1&�&L&&i1 &=&L&,

&L b i2&�&L&&i2 &=&L&.

Therefore if F : X_X � Y is n-times differentiable (n�1) then

&�1 F(x, y)&=&DF(x, y) b i1 &�&DF(x, y)&,
(1.1)

&�2 F(x, y)&=&DF(x, y) b i2 &�&DF(x, y)&,

and

&� i&1
1 �2F(x, y)&�&D iF(x, y)&,

(1.2)
&�1� i&1

2 F(x, y)&�&D iF(x, y)&

for i=1, ..., n.
Let f : X � Y be any function. We define the Jensen difference of f by

If (x, y) :=f \x+y
2 +&

f (x)+ f ( y)
2

,

for (x, y) # X_X.
Condition Cf =0 (If =0) mean, that f satisfies the Cauchy (Jensen)

equation.
Let n # N, and let f : X � Y be n-times differentiable. Then Cf and If are

n-times differentiable, and by (1.1) we have

&Df (x+ y)&Df ( y)&�&D(Cf )(x, y)&,
(1.3)

"Df \x+ y
2 +&Df ( y)"�2 &D(Jf )(x, y)&

for x, y # X.
Moreover, for n�2, we obtain from (1.2)

&Dif (x+ y)&�&Di (Cf )(x, y)&,
(1.4)

"Dif \x+ y
2 +"�2i &D i (Jf )(x, y)&

for x, y # X, i=2, ..., n.
To avoid distinguishing some cases and to shorten some considerations

we will use the following convention. If m, n # N, m>n then by �n
i=m a i we

mean zero.
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2. DOUBLE DIFFERENCE PROPERTY

We will prove that the class Cn(X, Y ) has the so called ``double difference
property'' (cf. [5]), i.e., if f : X � Y is such a function that Cf #
Cn(X_X, Y ), then there exists an additive function A : X � Y such that
f &A # Cn(X, Y ). A similar property for the Jensen difference will be
proved, too. These results will enable us to solve the stability problem of
the Cauchy and Jensen equations, with respect to certain class of
seminorms in Cn(X, Y ).

Theorem 2.1. Let n # N+ _ [�], and let f : X � Y be such a function
that Cf # Cn(X_X, Y). Then there exists a unique additive function A0 : X � Y
such that f &A0 # Cn(X, Y ) and D( f &A0)(0)=0. Moreover, then

&Dk( f &A0)(0)&�&DkCf (0)& for k # N, k�n, (2.1)

&Dk( f &A0)&sup�&DkCf &sup for k # N"[0], k�n. (2.2)

Proof. We show the first part of the theorem. Let f1= f& f (0). Then
Cf1=Cf +f (0) # Cn(X_X, Y ) and Cf1(0, 0)=0. Let x, y # X be arbitrarily
fixed. We consider the function

.(t) :=Cf1(tx, ty) for t # R.

Then we obtain

Cf1(x, y)=.(1)&.(0)=|
1

0
D.(t) dt=|

1

0
D(Cf1)(tx, ty)(x, y) dt

=|
1

0
�2(Cf1)(ty, tx)(x) dt+|

1

0
�2(Cf1)(tx, ty)( y) dt.

Thus

(Cf1)(x, y)=|
1

0
�2(Cf1)(ty, tx)(x) dt+|

1

0
�2(Cf1)(tx, ty)( y) dt

for x, y # X. (2.3)

Notice that

Cf1(x+ y, z)+Cf1(x, y)=Cf1(x, y+z)+Cf1( y, z) for x, y, z # X.
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Differentiating both sides of this equality with respect to z at the point
z=0, we obtain

�2(Cf1)(x+ y, 0)=�2(Cf1)(x, y)+�2(Cf1)( y, 0) for x, y # X. (2.4)

We define A0 : X � Y by the formula

A0(x) :=f1(x)&|
1

0
�2(Cf1)(tx, 0)(x) dt for x # X.

We show that A0 is additive. Making use of (2.3) and (2.4) we obtain for
x, y # X

A0(x+ y)&A0(x)&A0( y)

=Cf1(x, y)&|
1

0
�2(Cf1)(t(x+ y), 0)(x+ y) dt

+|
1

0
�2(Cf1)(tx, 0)(x) dt+|

1

0
�2(Cf1)(ty, 0)( y) dt

=|
1

0
�2(Cf1)(ty, tx)(x) dt+|

1

0
�2(Cf1)(tx, ty)( y) dt

&|
1

0
�2(Cf1)(tx+ty, 0)(x) dt&|

1

0
�2(Cf1)(tx+ty, 0)( y) dt

+|
1

0
�2(Cf1)(tx, 0)(x) dt+|

1

0
�2(Cf1)(ty, 0)( y) dt

=|
1

0
(�2(Cf1)(ty, tx)+�2(Cf1)(tx, 0)&�2(Cf1)(ty+tx, 0))(x) dt

+|
1

0
(�2(Cf1)(tx, ty)+�2(Cf1)(ty, 0)&�2(Cf1)(tx+ty, 0))( y) dt=0.

It means that A0 is additive.
Consider arbitrary x, h # X. We have

Cf1(x, h)=Cf1(x, h)&Cf (x, 0)=|
1

0
�2(Cf1)(x, th)(h) dt.
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Further by (2.4) we obtain

|
1

0
�2(Cf1)(x+th, 0)(h) dt=|

1

0
�2(Cf1)(x, th)(h) dt+|

1

0
�2(Cf1)(th, 0)(h) dt

=Cf1(x, h)+|
1

0
�2(Cf1)(th, 0)(h) dt.

Thus we have

|
1

0
�2(Cf1)(th, 0)(h) dt=&Cf1(x, h)+|

1

0
�2(Cf1)(x+th, 0)(h) dt (2.5)

for x, h # X.
Now we prove that f &A0 is differentiable. Consider arbitrary x, h # X.

Making use of the additivity of A0 and (2.5) we obtain

& f1(x+h)&A0(x+h)&( f1(x)&A0(x))&�2(Cf1)(x, 0)(h)&

="Cf1(x, h)+|
1

0
�2(Cf1)(th, 0)(h) dt&�2(Cf1)(x, 0)(h)"

="|
1

0
(�2(Cf1)(x+th, 0)&�2(Cf1)(x, 0)(h)) dt"

�&h& sup
t # [0, 1]

&�2(Cf1)(x+th, 0)&�2(Cf1)(x, 0)&.

Since �2(Cf1)=�2(Cf ) is continuous, &�2(Cf1)(x+th, 0)&�2(Cf1)(x, 0)& is
small for small h. Hence the function f &A0= f1&A0+ f (0) is differentiable
at x and

D( f &A0)(x)=�2(Cf1)(x, 0)=�2(Cf )(x, 0).

But �2(Cf ) # Cn&1(X_X, Y ), and hence �2(Cf )(x, 0) # Cn&1(X, Y ). There-
fore D( f &A0) # C n&1(X, Y ), i.e., f &A0 # C n(X, Y ). Moreover we have

D( f &A0)(0)=�2(Cf )(0, 0)=0.

To prove the uniqueness of A0 consider additive functions A1 , A2 : X � Y
such that f &A1 , f&A2 # Cn(X, Y) and D( f &A1)(0)=D( f &A2)(0)=0.
Then A1&A2 is additive, A1&A2 # Cn(X, Y ) and D(A1&A2)(0)=0. It
yields that A1=A2 .
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We claim that

&Dk( f &A0)(x)&�&Dk(Cf )(x, 0)& for x # X, k�n, k # N"[0].

(2.6)

Making use of (1.3) and the fact that D( f &A0)(0)=0, we obtain for x # X

&D( f &A0)(x)&=&D( f &A0)(x)&D( f &A0)(0)&�&D(Cf )(x, 0)&,

which proves (2.6) for k=1. For 2�k�n, k # N (2.6) follows directly from
(1.4).

The case k=0 in (2.1) is trivial. From (2.6) we obtain (2.1) for k�1 and
(2.2). K

Theorem 2.1 states, in particular, that the class of infinitely many times
differentiable functions has the double difference property. It is natural to
ask whether the class of analytic functions has this property. We show that
the answer is positive.

Corollary 2.1. Let f : X � Y be a function such that Cf is analytic.
Then there exists a unique additive function A0 : X � Y such that f &A0 is
analytic and D( f &A0)(0)=0.

Proof. By Theorem 2.1 there exists a unique additive function A0 :
X � Y such that f1 :=f &A0 # C�(X, Y) and Df1(0)=0. Then obviously
Cf1=Cf, and hence Cf1 is analytic. Making use of the equality

�2Cf1(x, 0)=Df1(x)&Df1(0) for x # X,

we obtain that Df1 is analytic, and consequently that f1 is analytic. K

In further considerations the following lemma will play an essential role.

Lemma 2.1. Let A : X � Y be an additive function, and let f : X � Y be
a differentiable function such that f &A is bounded. Let = # R+ _ [�] be
such that

sup
(x, y) # X_X

&Df (x)&Df ( y)&�=. (2.7)

Then A is linear continuous and

sup
x # X

&Df (x)&A&�=.
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Proof. Since f &A is bounded,

A(x)= lim
n � �

f (nx)
n

for x # X. (2.8)

By the Theorems 1 and 2 of D. H. Hyers (cf. [3]) A is linear continuous.
We fix arbitrary y # X. Applying the Mean Value Theorem for the function
f (x)&Df ( y)(x) and (2.7) we obtain

& f (x)&Df ( y)(x)& f (0)&�(sup
x # X

&Df (x)&Df ( y)&) &x&�= &x&.

Replacing in this inequality x by nx and dividing both sides by n we get

" f (nx)
n

&Df ( y)(x)&
f (0)

n "�= &x& for x # X.

Letting n � � and applying (2.8) we conclude that

&A(x)&Df ( y)(x)&�= &x& for x # X,

which means that &A&Df ( y)&�=. Since y was arbitrary, we have

sup
y # X

&A&Df ( y)&�=. K

Theorem 2.2. Let n # N+ _ [�], and let f : X � Y be such a function
that Cf # BCn(X_X, Y). Then there exists a unique additive function A� :
X � Y such that f &A� # BCn(X, Y). Moreover, then

&Dk( f &A�)&sup�&DkCf &sup for k # N, k�n, (2.9)

&Dk( f &A�)(0)&�&DkCf (0)& for k # N"[1], k�n. (2.10)

Proof. In virtue of Theorem 2.1 there exists an additive function A0 :
X � Y such that f1 :=f &A0 # Cn(X, Y ). Then Cf1=Cf # BCn(X_X, Y ). It
means, in particular, that Cf1 is bounded. By the Hyers Theorem there
exists an additive function A1 : X � Y such that

sup
x # X

& f1(x)&A1(x)� sup
(x, y) # X_X

&Cf1(x, y)&. (2.11)

We put

A�(x) :=A0(x)+A1(x) for x # X.
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Clearly A� is additive and f &A�= f1&A1 . From (1.3) we obtain

sup
(x, y) # X_X

&Df1(x)&Df1( y)� sup
(x, y) # X_X

&D(Cf1)(x, y)&. (2.12)

Conditions (2.11) and (2.12) mean that the functions f1 and A1 satisfy the
assumptions of Lemma 2.1 with ==sup(x, y) # X_X &D(Cf1)(x, y)&. Hence A1

is continuous linear and

sup
x # X

&D( f &A�)(x)&=sup
x # X

&Df1(x)&A1 &

� sup
(x, y) # X_X

&D(Cf )(x, y)&. (2.13)

Making use of (2.11), (2.13), and (1.4) we obtain (2.9). For k=0 (2.10) is
obvious and for k�2 it is a trivial consequence of (1.4). K

Proposition 2.1. The functions A0 and A� occuring in Theorems 2.1
and 2.2 can be defined by the formulae

A0(x)=: lim
n � �

f (x�n)& f (0)
1�n

for x # X,

A�(x)= lim
n � �

f (nx)
n

for x # X.

Proof. Since D( f &A0)(0)=0, we have for x # X, x{0

lim
n � �

& f (x�n)&A0(x�n)& f (0)&
&x�n&

=0,

i.e.,

lim
n � � "A0(x)&n \f \x

n+& f (0)+ " }
1

&x&
=0,

which yields the first formula for x # X, x{0. It obviously also holds for
x=0.

The formula for A� is a trivial consequence of the fact that the function
f &A� is bounded. K

Comparing the formulae for A0 and A� one can easily notice that these
functions are usually different. The following example shows it explicitly.
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Example 2.1. Let f : X � Y be a bounded differentiable function. As f is
bounded, we obtain that A�=0. Since A0=Df (0), A0=A� if and only if
Df (0)=0.

3. JENSEN DIFFERENCE PROPERTY

Now we are going to prove analogues of Section 2 for the Jensen
difference.

Theorem 3.1. Let n # N+ _ [�], and let f : X � Y be such a function
that If # Cn(X_X, Y ). Then there exists a unique Jensen function F0 :
X � Y such that f &F0 # Cn(X, Y ) and f (0)=F0(0), D( f &F0)(0)=0.
Moreover, then

&Dk( f &F0)(0)&�2k &DkIf (0)& for k # N, k�n, (3.1)

&Dk( f &F0)&sup�2k &DkIf &sup for k # N"[0], k�n. (3.2)

Proof. We have for x, y # X

Cf (x, y)= f (x+ y)& f (x)& f ( y)=If (2x, 2y)&If (2x, 0)&If (0, 2y).

Hence Cf # Cn(X_X, Y). By Theorem 2.1 there exists a unique additive
function A0 : X � Y such that f &A0 # Cn(X, Y ) and D( f &A0)(0)=0.
We put F0=A0+ f (0). Since any Jensen function is a sum of an additive
function and a constant it is clear that the conditions F0(0)= f (0),
f &F0 # Cn(X, Y ) and D( f &F0)(0)=0 determine F0 uniquely. Applying
these results, (1.3) and (1.4) we obtain

&Dk( f &F0)(x)&�2k &Dk(If )(2x, 0)& for x # X, k # N, k�n.

Thus we get (3.1) for k�1 and (3.2). (3.1) for k=0 is obvious as
( f &F0)(0)=0. K

The stability question of the Jensen equation with respect to the
supremum norm has already been solved (cf. [3], [9], [1]). It was done
by reducing the problem to the Cauchy case. The estimation of f &F
obtained in this way, namely & f & F&sup�4 &If &sup is not sharp. We
obtain a better one (we are indebted to the referee who shortened our
original proof of this result).

Proposition 3.1. Let (S, +) be a uniquely 2-divisible commutative semi-
group with zero. If a function f : S � Y satisfies the inequality

&If &sup<�,
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then there exists a unique Jensen function F : S � Y such that F(0)= f (0)
and

& f&F&sup�2 &If &sup .

Proof. We know that there is a Jensen function F : S � Y such that
F(0)= f (0) and g= f&F is bounded. We have to show that

&g&sup�2 &If &sup .

We may assume that &If &sup=1. Since g(0)=0 and Ig=If, we have

&g(x)& 1
2 g(2x)&�&Ig&sup=1

for every x # S. Therefore

&g(x)&�1+ 1
2 &g&sup .

Since this is true for every x # S, it follows that &g&sup�1+ 1
2 &g&sup and

&g&sup�2.
The uniqueness of F is trivial. K

Theorem 3.2. Let n # N+ _ [�], and let f : X � Y be such a function
that If # BCn(X_X, Y ). Then there exists a unique Jensen function
F� : X � Y such that f &F� # BCn(X, Y) and F�(0)= f (0). Moreover,

&Dk( f &F�)&sup�max[2, 2k] &DkIf &sup

for k�n, k # N, (3.3)

&Dk( f &F�)(0)&�2k &DkIf (0)&

for k�n, k # N"[1]. (3.4)

Proof. In virtue of Theorem 3.1 there exists a Jensen function
F0 : X � Y such that f1 :=f &F0 # Cn(X, Y ) and f1(0)=0. Then If1=If #
BCn(X_X, Y ). It implies that If1 is bounded. By Proposition 3.1 there
exists a Jensen function F1 : X � Y such that F1(0)= f1(0)=0 and

sup
x # X

& f1(x)&F1(x)&�2 sup
(x, y) # X_X

&If1(x, y)&. (3.5)

We put

F�(x) :=F0(x)+F1(X) for x # X.
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Clearly F� is Jensen and f &F�= f1&F1 . From (1.3) we obtain

sup
(x, y) # X_X

&Df1(x)&Df1( y)&�2 sup
(x, y) # X_X

&D(If1)(x, y)&. (3.6)

As F1 is Jensen and F1(0)=0 we obtain that F1 is additive. Conditions
(3.5) and (3.6) imply that the functions f1 and F1 satisfy the assumptions
of Lemma 2.1 with ==2 sup(x, y) # X_X &If &. Hence F1 is continuous linear
and

sup
x # X

&D( f &F�)(x)&=sup
x # X

&Df1(x)&F1&�2 sup
(x, y) # X_X

&D(If )(x, y)&.

(3.7)

Making use of (3.5), (3.7), and (1.4) we obtain (3.3). For k=0 (3.4) is
trivial and for k�2 it is a direct consequence of (1.4).

The uniqueness of F follows from Proposition 3.1. K

4. STABILITY

In subspaces of Cn(X, Y ) one can consider different norms defined in
terms of &Dif (0)&, &Dif &sup for i�n. For example the following norms

& f & := :
n&1

i=0

&Dif (0)&+&Dnf &sup , (4.1)

& f & := max
i=0, ..., n

&Dif &sup (4.2)

are used very often. Obviously several other natural norms can be intro-
duced. Our aim is not to restrict to any particular norm, and therefore we
will formulate our results in a possibly general setting.

Let n # N _ [�] be fixed. In the set [0, �]2n we introduce the following
order

(x1 , x2 , ...)�( y1 , y2 , ...)

iff xi� yi for i # N, i�2n.
Let p : [0, �]2n � [0, �] be any function satisfying the following

conditions
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(i) p(x+ y)�p(x)+ p( y) for x, y # [0, �]2n,

(ii) p(:x)=:p(x) for x # [0, �]2n, : # [0, �)(0 } �=0),

(iii) x� y O p(x)�p( y) for x, y # [0, �]2n.

From (ii) we obtain that p(0)=0.
We define the mapping 8 : Cn(X, Y ) � [0, �]2n by the formula

8( f ) :=(& f (0)&, & f &sup , &Df (0)&, &Df &sup , ...)

and put

Sp(X, Y) :=[ f # Cn(X, Y) : p(8)( f ))<�].

Since p(0)=0, Sp contains at least the zero function. It is easy to notice
that Sp is a linear space and that p b 8 | Sp is a seminorm. We will denote
this seminorm by & }&p . The same notations we will apply for the space
Cn(X_X, Y ).

Theorem 4.1. Let f : X � Y be such a function that Cf # Sp(X_X, Y ).
We additionally assume that the function p does not depend on the second or
third variable.

Then there exists an additive function A : X � Y such that f &A # Sp(X, Y )
and

& f&A&p�&Cf &p .

Proof. Assume that Cf # Sp(X_X, Y ). Suppose that p does not
depend on the second variable. Then p(0, �, 0, ...)= p(0, 0, 0, ...)=0. By
Theorem 2.1 there exists an additive function A0 : X � Y satisfying
conditions (2.1) and (2.2). Then 8( f &A0)�8(Cf )+(0, �, 0, 0, ...) and
hence

p(8( f &A0))�p(,(Cf )+(0, �, 0, ...))�p(8)(Cf0))+0,

i.e.,

& f&A0&p�&Cf &p .

Suppose now that p does not depend on the third variable. If Cf #
BCn(X_X, Y ) then by Theorem 2.2 there exists an additive function A�

such that conditions (2.9) and (2.10) are satisfied. Hence 8( f &A�)�
8(Cf )+(0, 0, �, 0, ...) and consequently

& f&A�&p�&Cf &p .
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If Cf is unbounded then &Cf &sup=�. By Theorem 2.1 we can find an
additive function such that the conditions (2.1) and (2.2) hold. Then
8( f &A0)�8(Cf ) and hence

& f&A0&p�&Cf &p .

One can easily notice that if we define for n # N+

p(x1 , x2 , ..., x2n) := :
n&1

i=0

x2i+1+x2n , (4.3)

or

p(x1 , x2 , ..., x2n) := max
i=1, ..., n

[x2i], (4.4)

then we would obtain stability of the Cauchy equation in the norms
defined by the formulae (4.1) or (4.2).

The following example shows that the estimation of f &A obtained in
Theorem 4.1 for n=2 and the norm defined by the formula (4.4) is sharp.

Example 4.1. Let n=2 and let p be defined as in (4.4). Let the norm
in X_X be defined by

&(x1 , x2)&=|x1 |+|x2 | for x1 , x2 # R,

and let

f (x)=arctan x for x # R.

One can check easily that for a fixed y # R

sup
x # R

|Cf (x, y)|=|arctan|.

Hence

sup
x # R

|Cf (x, y)|=
?
2

.

We will calculate sup(x, y) # R_R &D(Cf )(x, y)&. Fix arbitrarily x, y # R.
Then we obtain
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&D(Cf )(x, y)&= sup
&(h1 , h2)&=1 }\

1
1+(x+ y)2&

1
1+x2+ h1

+\ 1
1+(x+ y)2&

1
1+ y2+ h&2 }

�max {} 1
1+(x+ y)2&

1
1+x2 } , } 1

1+(x+ y)2&
1

1+ y2 }= .

On the other hand, we have

&D(Cf )(x, y)&� sup
&(h1 , h2)&=1 \}

1
1+(x+ y)2&

1
1+x2 } |h1 |

+ } 1
1+(x+ y)2&

1
1+ y2 } |h2 |+

�max {} 1
1+(x+ y)2&

1
1+x2 } , } 1

1+(x+ y)2&
1

1+ y2 }= .

Thus we have

&D(Cf )(x, y)&=max {} 1
1+(x+ y)2&

1
1+x2 } , } 1

1+(x+ y)2&
1

1+ y2 }=
for x, y # R.

Hence we obtain

sup
(h1 , h2) # R_R

&D(Cf )(x, y)&=1,

and consequently

&Cf &p=max {?
2

, 1==
?
2

.

Since f is bounded, the unique additive function which approximates f is
A#0. Then

& f&A&p=max[sup
x # R

| f (x)|, sup
x # R

|Df (x)|]=max {?
2

, 1==
?
2

.

Making use of Theorems 3.1, 3.2 by the similair reasoning as in Theorem 4.1,
one can get the following stability result on the Jensen equation.
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Theorem 4.2. Let n # N+ , and let f : X � Y be such a function that
If # Sp(X_X, Y ). We additionally assume that p does not depend on the
second or third variable.

Then there exists a Jensen function F : X � Y such that f &F # Sp(X, Y )
and

& f&F&p�2n &If &p .
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